

President: Pier Luigi Zinzani Co-President: Michele Cavo Honorary President: Sante Tura Bologna, Royal Hotel Carlton October 1-3, 2018

BOLOGNA, ROYAL HOTEL CARLTON

ABL001 and combination

Massimo Breccia Az. Policlinico Umberto I Sapienza University Rome

President: Pier Luigi Zinzani Co-President: Michele Cavo Honorary President: Sante Tura Bologna, Royal Hotel Carlton October 1-3, 2018

BOLOGNA, ROYAL HOTEL CARLTON

Disclosures of NAME SURNAME

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Novartis			х		х	х	
BMS			x				
Incyte			x			x	
Pfizer			x				
Celgene			x				

ABL001 is a potent, specific inhibitor of BCR-ABL1 with a distinct allosteric mechanism of action

- Developed to gain greater BCR-ABL1 inhibition, with activity against BCR-ABL1 mutations conferring resistance to TKIs
- Potential to combine with TKIs for greater pharmacologic control of BCR-ABL1

Autoinhibition of ABL1 by engagement of myristoyl binding site

The kinase domain is normally occupied by the myristoylated Nterminus of ABL1, which serves as a key negative regulator of ABL kinase activity

SH2, Src homology 2; SH3, Src homology 3. Nagar B, et al. Cell 2003;112:859–871.

The fusion between BCR and ABL1 results in the loss of this regulatory element, which contributes to the constitutive activation of the kinase activity

Hantschel O & Superti-Furga G. Nat Rev Mol Cell Biol 2004;5:33–44.

ABL001 allosterically inhibits BCR-ABL1 kinase activity

ABL001 functionally mimics the role of the myristoylated peptide by occupying its vacant binding site and restoring the negative regulation of the kinase activity

Hantschel O & Superti-Furga G. Nat Rev Mol Cell Biol 2004;5:33-44; Adrian FJ, et al. Nat Chem Biol 2006;2:95-102.

ABL001: biochemical assay at high and low ATP concentration

ABL001 is able to inhibits ABL1 kinase regardless of high or low ATP concentration as compared to second generation TKIs

ABL001: In vitro cellular activity

- Using the BaF3/BCR-ABL system that does not require IL3 to grow and is dependent on BCR-ABL for proliferation (nilotinib used as positive control):
 - * ABL001 inhibited BaF3 with an IC₅₀ of 0.25 μ M
 - * If IL3 was added, the IC₅₀ was 2 μ M (the highest dose tested)

Hantschel O & Superti-Furga G. Nat Rev Mol Cell Biol 2004;5:33–44; Adrian FJ, et al. Nat Chem Biol 2006;2:95–102.

- Using the BaF3/BCR-ABL system containing point mutations, ABL001 maintained activity against all mutations, at concentrations below 50 nM
- \blacktriangleright ABL001 inhibits cells with T315I, whereas nilotinib is inactive at concentrations up to 10 μM

Effect of ABL001 on proliferation of cancer cell lines

- ABL001 was tested in 500+ cell line panels and selectively inhibits only BCR-ABL1-positive cells with IC₅₀ ranging from 1–12 nM
- Cell lines that did not express BCR-ABL1 remained unaffected until the concentrations reached 2–30 µM

Adrian FJ, et al. Nat Chem Biol 2006;2:95–102; Wylie A, et al. Blood 2014:124 [abstract 398].

- KCL-22 (BC cell line) was selected to test the PK/PD relationship for ABL001
- A single oral dose of ABL001 at 3.0, 7.5, 15.0, and 30.0 mg/kg resulted in maximal pSTAT5 inhibition of 62%, 98%, 99%, and 99%, respectively
- At the 30 mg/kg dose level, >80% pSTAT5 inhibition was maintained for 16 hours post dose

- Tumor growth inhibition:
 - ✤ 3 mg/kg corresponds to tumor growth inhibition of 55%
 - 30 mg/kg corresponds to tumor growth inhibition of 92%

Efficacy of ABL001 in a 3 patients-derived ALL systemic xenograft models

FACS monitoring of the percentage of CD45+ cells per live cell in blood samples:

- A control group was treated with PBS vehicle
- 30 mg/kg corresponds to long-lasting inhibition

Proliferation IC₅₀ profiles in Ba/F3 BCR-ABL1-mutant lines

Wylie A, et al. Nature 2017; 543: 733-737

Myristoyl binding site mutations

Proliferation IC₅₀ profiles in Ba/F3 BCR-ABL1-mutant lines

Wylie A, et al. Nature 2017; 543: 733-737

Combination of ABL001 and nilotinib prevents the emergence of resistance (KCL-22 CML xenograft)^{*}

- Nilotinib (75 mg/kg) BID
- → ABL001 (30 mg/kg) BID
- Nilotinib (75 mg/kg) BID + ABL001 (30 mg/kg) BID
- ★ Dosing stopped on Day 77; all mice remain disease free >176 days

PK and metabolic profile

- In animal models (rat, dog, monkey), following oral dosing, T_{max} ranged from 0.5–4 h
- Absorption is formulation-dependent
- Low to moderate bioavailability
- Binding of ABL001 to protein is high, and independent of concentration
- ABL001 is extensively distributed to most tissues
- No distribution to CNS and minimal penetration to the reproductive system
- Following administration, ABL001 is the predominant circulating form
- Biliary excretion is the major elimination pathway
- Metabolic profile different for different species (glucuronidation most readily in humans through UGT1A3, UGT1A4, UGT2B7, and UGT2B17)
- ABL001 shows reversible inhibition of CYP3A4/5, CYP2C8, CYP2C9, CYP2B6
- ABL001 is an inhibitor of BCRP, pGp, and a weak inhibitor of OCT1

BCRP, ATP binding cassette protein; CNS, central nervous system; CYP, cytochrome P450; OCT1, organic cation transporter 1; pGp, p-glycoprotein; T_{max}, time to maximum concentration; UGT, UDP-glucuronosyltransferase. • Wylie A, *et al. Nature 2017; 543: 733-737*

- A single-center, open-label, randomized, crossover, two-arm study in 45 healthy subjects
 - 22 subjects treated with oral formulation (variant AAA)
 - 23 subjects treated with tablet formulation (variant NXA)
- Both arms compared under fasting conditions, or after a low- or high-fat meal
- ABL001 exhibited a negative food effect, and low- and high-fat meals decreased the bioavailability of ABL001 by 30% and 65%, respectively
- ABL001 administered twice-daily was rapidly absorbed with a T_{max} of 2–3 h, independent of dose
- C_{max} and AUC increased in an approximately dose-proportional manner
- Steady state was reached before Day 15 of Cycle 1

ABL001X2101: Study design A multicenter, Phase I, first-in-human study

Key inclusion criteria

- ◆ Patients (aged ≥18 years)
- CML in chronic, accelerated or blastic phases
- ✤ Failed (relapsed/refractory) ≥2 prior TKIs or intolerant of TKIs
 - Patients with T315I mutation eligible after 1 prior TKI
- ECOG performance status 0–2

Key exclusion criteria

- Strong inhibitors or inducers of CYP3A4 or CYP3A4 substrates with narrow therapeutic index
- Laboratory parameters
 - ANC <500/mm³
 - Platelet count <50,000 mm³
 - Bilirubin >1.5 × ULN or >3.0 × ULN in patients with Gilbert's syndrome
 - AST or ALT >3.0 × ULN
 - Creatinine >1.5 × ULN

	N=123
Median age (range), years	55 (23–79)
Male / female, %	61/ 39
ECOG PS 0–1 / 2, %	72/28
Prior lines of therapy, median (range)	3 (1–5)
1 prior TKI, %	5
2 prior TKIs, %	30
≥3 prior TKIs, %	65
CML-CP / -AP, / CML-BP/ALL, %	88/4/2/6
TKD non-mutated / mutant / not evaluable, %	46/30/24

Patient disposition: single agent ABL001 in CML

	Monotherapy BID				Monotherapy QD			Total		
mg	10	20	40	80	150	200	80	120	200	
n	1	14	35	12	10	5	6	10	6	99
Median duration of exposure, weeks	49	37.6	29.6	81	52.6	69.4	16.8	51.6	53.6	37.6
Ongoing, n (%)	0	14	30 (86)	9 (75)	7 (70)	3 (60)	6 (100)	10	5 (83)	84 (85)
engenig, n (70)	Ū	(100)	00 (00)	0 (10)	. ()	0 (00)	0 (100)	(100)	0 (00)	0 1 (00)
Discontinued, n (%)	1 (100)	0	5 (14)	3 (25)	3 (30)	2 (40)	0	0	1 (17)	15 (15)
Reason for discontinuation, n (%)										
AE	0	0	2 (6)	1 (18)	2 (20)	1 (20)	0	0	0	6 (6)
Pt/guardian decision	1 (100)	0	1 (3)	1 (8)	0	1 (20)	0	0	0	4 (4)
Disease progression*	0	0	2 (6)	0	1 (10)	0	0	0	1 (17)	4 (4)
Death *Or	nly ֆpt	with de	tectable	e mygjst	oil bindi	ing poc	ket ຫຼູແຜ່	ations ('	V64&H, I5	024L(H)

Dose proportionality using C1D15 (steady state) AUC_{last} from individual patients: 10 to 200 mg BID

- ▶ Rapid absorption (median T_{max}≈2 to 3 h)
- Dose-proportional increase in exposure following single and repeated dosing
- Low (<2-fold) to moderate (≈2-fold) accumulation on repeated dosing</p>
- Short apparent elimination half-life (median≈5 to 6 h)

Safety: AE suspected of being related to study drug occurring in \geq 5% of patients

Adverse Event	All Grades, n (%)	Grade 3/4, n (%)
Lipase increase	26 (21)	12 (10)
Rash	19 (15)	0
Thrombocytopenia	16 (13)	7 (6)
Fatigue	15 (12)	1 (1)
Nausea	14 (11)	0
Arthralgia	13 (11)	0
Amylase increased	12 (10)	1 (1)
Headache	12 (10)	0
Pruritus	11 (9)	1 (1)
Anemia	9 (7)	5 (4)
Diarrhea	9 (7)	0
Myalgia	9 (7)	1 (1)
Vomiting	9 (7)	0
Hypophosphatemia	7 (6)	1 (1)
Neutropenia 32 CABL601A2301 Investigator Meeting 08 November 2017 Frank	furt am Main I Business Use Onl)	5 (4)

Safety: dose-limiting toxicities

- 92 patients evaluable for dose escalation
- There were 6 dose-limiting toxicities:
 - Grade 3 lipase increase (n = 3; 40 mg BID, 200 mg QD, ABL001 40 mg BID + dasatinib 100 mg QD)
 - Grade 2 myalgia/arthralgia (80 mg BID)
 - Grade 3 acute coronary event (150 mg BID)
 - Grade 3 bronchospasm (200 mg BID)
- MTD not declared; 40 mg BID declared as recommended dose for single-agent BID schedule in CML-CP
 - Based on combined analyses of safety, preliminary efficacy, and results of a population-based PK-response model

Responses with single agent asciminib $BID \ge 3 \mod 2$ mos exposure on study

Disease Status at Baseline

CCyR, complete cytogenetic response; CHR, complete hematologic response; IS, International Scale; MMR, major molecular response.

* Patients had ≥ 6 months of treatment exposure or achieved response within 6 months; b BCR-ABL1th reduction achieved; * Patients had ≥ 12 months of treatment exposure or achieved response

In vitro and in vivo activity against T315I mutation

Days post implant Wylie et al Nature 2017.

16

Sensitivity of parental KCL-22WT, KCL-22 T315I and KCL-22 A337V to ABL001 and Nilotinib

KCL-22 T315I were implanted in a xenograft model and ABL001 tested at increased dose

Responses in CML patients with T315I mutation

- 11 of 77 (14%) CML patients treated with BID ABL001 had T315I mutations
- ABL001 exhibits a similar duration of exposure in CML patients regardless of T315I mutation status
- Responses in T315I mutant CML patients treated with single agent ABL001
 BID for <u>></u> 3 months
 - 4 of 10 patients in cytogenetic relapse at baseline (> 35% Ph+) achieved CCyR by 6 mo
 - 6 patients have maintained stable disease without achieving CCyR or MMR
 - 1 patient has maintained a baseline MMR for > 1 year
 - No patients have progressed to blast crisis

Possible mechanisms of resistance to asciminib (I)

• Upregulation of the ABCG2 efflux pump

-Generation of 5 asciminib resistant cell lines

-Asciminib level was measured by mass spectrometry

-Asciminib was undetectable in K562 asciminib-R

-ABCG2 inhibitor (Ko143) restored asciminib effectiveness against K562 ^{asciminib-R}

-Asciminib resistance can be override by dose escalation of the drug or the association with ABCG2 inhibitor

Possible mechanisms of resistance to asciminib (II)

 Emergence of BCR-ABL1 mutations at the myristoil binging site and at a distant residue

-C464W as asciminib-resistant mutant: the bulky tryptophan residue prevents access of asciminib to the myristoilbinding pocket

-Other mutations near the myristoilbinding pocket that can confer resistance are:

A337V, P465S, V468F or compound mutation M244V/A337V

ABL001 overcomes TKI resistance and enhances MDM2 inhibitor activity in blast crisis

- ABL001 exhibits cytotoxicity in cell from BC patient samples with multiple mutations treated with various TKIs
- Activation of p53 by MDM2 inhibition induces apoptosis and enhances the activity of ABL001 in apoptosis induction in CD45+, CD34+CD38+ or CD34+CD38cells
- ABL001 overcomes BCR-ABL TKI resistance and enhances MDM2 inhibitor activity in BC-CML

Clinical case (1): our first and long-term treatment pts

• Previously resistant to imatinib, nilotinib and dasatinib. Also intolerant to dasatinib 100 mg, with several episodes of hematologic toxicity (Grade 3 thrombocytopenia)

Clinical case (2): a patient who developed resistance to ABL001 but was rescued with dose escalation

• Previously resistant to imatinib (ACA/OCA) and dasatinib (F317V, also intolerant to dasatinib with neutropenia, mouth ulcers). Previous thrombotic events.

ABL001 vs bosutinib in CML pts prevously treated with 2 or more TKIs

Primary endpoint: to compare the rate of MR3 at 24 weeks

Phase II Study Design – Asciminib add on to 1L Imatinib (CABL001E2201) 4 Arm Study Design Allows Evaluation of 2 dose levels against 2 controls

 MR 4.5 at wk 48
 Study End
 CML-CP patients
 ≥2 years on frontline Imatinib
 BCR-ABL >0.01%-≤1.0% (suboptimal response)
 1:1:1:1 N=120
 Stay on Imatinib
 Switch to Nilotinib

* Patients on imatinib continuation without MR4.5 after 48 weeks of treatment will be offered to crossover to combination treatment

Primary Objective	 Compare MR4.5 rate at 48 weeks with asciminib (40 or 60 mg) + imatinib vs continued imatinib
Secondary Objective	 Estimate difference in MR4.5 rate at 48 weeks between asciminb (40 or 60 mg)+imatinib and switch to Nilotinib Assess additional efficacy parameters with asciminib (40 or 60 mg) vs continued imatinibor switch to nilotinib Safety and tolerability profile of Asciminib + Imatinib vs continued Imatinib or switch to Nilotinib Assess PK profile of Asciminib (40 or 60 mg) +Imatinib
Exoloratory Objective	Patient –reported outcomesBiomarkers

- ABL001 was generally well tolerated in heavily-treated CML patients resistant to or intolerant of prior TKIs
- Preliminary pharmacokinetic exposures appear linear in the dose range tested
- Evidence of single-agent efficacy at 40 mg BID
 - Clinical activity across several TKI-resistant mutations (e.g, V299L, F317L, Y253H)
 - Myristoyl binding pocket mutations (V468H, I502L, A337V, C464W) may lead to clinical resistance
- Allosteric inhibition of BCR-ABL1 is a promising therapeutic approach in patients with CML